
Code Review and Security Assessment
For

MACI/QFI
Initial Delivery: July 15, 2022

Final Delivery: September 30, 2022

Prepared For
Cory Dickson | Ethereum Foundation
Barry Whitehat | Ethereum Foundation
Chao Ma | Ethereum Foundation
TheF3llowship | Ethereum Foundation

Prepared by
Er-Cheng Tang | HashCloak Inc
Mikerah Quintyne-Collins | HashCloak Inc

Table Of Contents

Executive Summary 4

Overview 5

Methodology 5

Claim Validity 5

Findings 6
Data are not fully verified during state update 6
Unconstrained variables 6
Doesn’t take into account ERC20s with blacklisting abilities 7
Token for top-up is a free resource 7
Integer overflow problem & improper bit length restrictions 7
Missing re-initialization 8
MessageQueue in PollFactory is uninitialized 9
Doesn’t take into account ERC20s that are deflationary or charge a fee upon
transfer 9
Transactions do not revert when there aren’t enough funds 9
Inconsistent restriction on voice credit upper bound 10
Redundant functions and redundant checks 10
Potential for Re-entrancy in QFI 11
Potential for Re-entrancy in MACI 11
Potential for Re-entrancy in Poll 12
Return values of transferFrom calls are not checked 12
Miscellaneous mistakes 12
The QFI owner is powerful enough to decide the payout distribution 13
Subsidy functionality is incomplete 13
Incorrect error messages 13
Return value of ExtContracts.maci.mergeStateAq is ignored in Poll contract 14
Anyone can pass mismatched length encryption keys and message batches to
PublishMessageBatch 14
Naming conflict with transferMatchingFunds in FundsManager and GrantFactory
14
isAfterDeadline, topup and publishMessage in Poll rely on the block timestamp
15

Boolean conditions in require statements can be simplified 15
State variables are incremented within a loop in AccQueue.mergeSubRoots 15
_decimals in TopUpCredit and stateTreeDepth in MACI are not constant 15
ERROR_VK_NOT_SET and ERROR_SB_COMMITMENT_NOT_SET should be
moved to PollProcessorAndTallyer 16

General Recommendations 16
Set public functions to external if they have no internal calls 16
Use consistent Solidity versions across files 16
Do multiplications before divisions 16
Check return values of external calls 17

Executive Summary
The Ethereum Foundation’s Applied ZKPs team engaged HashCloak Inc for an audit of
MACI and QFI which are voting and funding related infrastructures. The audit was done
by 2 auditors from July 4, 2022 to July 18, 2022. The relevant codebase was the MACI
and the QFI repositories, assessed at commits 749eec…319366 and eab14a…3e7b95
respectively. During the first week we familiarized ourselves with the underlying design
and the codebase of MACI and QFI. In the following weeks we investigated the security
of the codebase through various efforts. From September 26, 2022 to September 30,
2022, we re-assessed the codebases at the following commits and pull requests:

● https://github.com/privacy-scaling-explorations/maci/pull/522
● https://github.com/privacy-scaling-explorations/maci/pull/523
● https://github.com/quadratic-funding/qfi/commit/b0777ec15ec1165adbb019717

68f348797c4fc9e
All of the issues we identified have been rectified as of those commits and pull
requests or are slated to be fixed in a future release of MACI or the QFI repositories.

We found several issues ranging from critical to informational during the audit.

Severity Number of Findings

Critical 3

High 5

Medium 1

Low 7

Informational 10

https://github.com/privacy-scaling-explorations/maci/tree/feat/codefreeze
https://github.com/quadratic-funding/qfi/tree/feat/codeFreeze
https://github.com/privacy-scaling-explorations/maci/commit/749eec344c4ab3b4764b924c3328a7896a319366
https://github.com/quadratic-funding/qfi/commit/eab14a3f1e9bceb4a81f1132ea14909c7c3e7b95
https://github.com/privacy-scaling-explorations/maci/pull/522
https://github.com/privacy-scaling-explorations/maci/pull/523
https://github.com/quadratic-funding/qfi/commit/b0777ec15ec1165adbb01971768f348797c4fc9e
https://github.com/quadratic-funding/qfi/commit/b0777ec15ec1165adbb01971768f348797c4fc9e

Overview
Minimal Anti-Collusion Infrastructure (MACI) aims to provide a quadratic voting system
that disincentives collusion behavior. It is deployed as Ethereum smart contracts where
users can sign up and make anonymous votes. The work of processing these votes is
delegated to a coordinator, who has the privilege to read the encrypted votes and has to
prove its correct execution to the smart contract.

MACI is now updated to support 2 additional features. First, users can top-up their voice
credits as they engage in various polls. Second, the coordinator is in charge of subsidy
calculation, which could be verified in smart contracts. These changes would give MACI
wider applicabilities and enhanced guarantees.

Quadratic Funding Infrastructure (QFI) is an application of MACI to the crowd funding
scenario. Users obtain voice credits by transferring tokens to the grant pool, and they
place their votes using MACI. At the end of each grant round, the grant receivers can
claim funds from the grant pool. The amount one can claim is in proportion to the
square of the total votes that one gets, which explains the name quadratic funding.

Methodology
We checked through common Ethereum vulnerabilities manually according to __ , and
we ran the __ analyzer to aid our analysis. We further investigated potential attack
surfaces based on our hacking experience.

Claim Validity
Our investigation shows that the following properties made in the MACI docs are valid:

● Collusion resistance
● Receipt freeness
● Privacy
● Uncensorability

https://github.com/privacy-scaling-explorations/maci/tree/feat/codefreeze/docs

Findings

Data are not fully verified during state update
Type: Critical
Files affected: maci/circuits/processMessages.circom

Description: Among the goals of MACI is ensuring correct execution by the coordinator.
MACI uses zk-SNARK to verify the correctness of each execution step. The verification
should check that the new state is the result of executing several user messages on the
current state. We found that the verification in processMessages.circom is incomplete.
In particular, topupStateLeaves and topupStateLeavesPathElements are never
verified against the current state, while topupStateIndexes and topupAmounts are
never verified against the message root. However, all of these fields will affect the new
state through ProcessTopup.

Impact: A malicious coordinator can change the MACI state arbitrarily, meaning that it
can change the voice credit and the voting public key of any user to any value. Many of
the security claims of MACI would be violated because of this issue.
Suggestion: Assign the index and the amount with msgs[i][1] and msgs[i][2] in
lines 332, 333. Assign the state leaf and the path elements with currentStateLeaves
and currentStateLeavesPathElements in lines 336, 337.
Status: This has been rectified as of commit
6df6a4054da926b07f35c5befab4f1f8af33dcc6.

Unconstrained variables
Type: Critical
Files affected: qfi/contracts/GrantRound.sol, qfi/contracts/QFI.sol

Description: The value _tallyCommitment in the function claimFunds is provided by
the caller. There is no guarantee that the caller will use the correct value; the variable
should be replaced with tallyHash which is provided by the trusted coordinator. One
can further assume less trust from the coordinator by getting the tally commitment
from the tallyCommitment field of the PollProcessorAndTallyer contract. Likewise,
the value _alphaDenominator in the function finalize is provided by the QFI owner,
which is only assumed to be correct without verification.

https://github.com/privacy-scaling-explorations/maci/blob/feat/codefreeze/circuits/circom/processMessages.circom#L332
https://github.com/privacy-scaling-explorations/maci/blob/feat/codefreeze/circuits/circom/processMessages.circom#L333
https://github.com/privacy-scaling-explorations/maci/blob/feat/codefreeze/circuits/circom/processMessages.circom#L336
https://github.com/privacy-scaling-explorations/maci/blob/feat/codefreeze/circuits/circom/processMessages.circom#L337
https://github.com/privacy-scaling-explorations/maci/pull/522/commits/6df6a4054da926b07f35c5befab4f1f8af33dcc6

Impact: A malicious recipient can claim an arbitrary amount of tokens from a grant
round by calling claimFunds using wrong tally result, tally commitment, and tally proof.
Suggestion: Replace the parameter _tallyCommitment with the state variable
tallyHash, or get the value from PollProcessorAndTallyer.tallyCommitment().
Make the alpha calculation part of the contract logic to ensure correctness.
Status: This issue has been acknowledged by the development team and will be
included in a future release.

Doesn’t take into account ERC20s with blacklisting abilities

Type: Critical
Files affected: qfi/GrantRound.sol, qfi/QFI.sol
Description: In the QFI contract, an owner can choose to use any ERC20 token they
want. As such, an owner can choose to use an ERC20 token such as USDC that has
blacklisting capabilities. Once a particular address has been blacklisted, the funds
owned by that address can no longer be moved. As such, it is possible that some of
the funds within the GrantRound contract are stuck in the event of a blacklisting.

Impact: Funds controlled by the QFI contract can be frozen.
Suggestion: Document this risk to users who may want to support such tokens for
example USDC or USDT.
Status: This issue has been acknowledged by the development team and they have
provided extra clarity within their documentation around using ERC20s with blacklisting
abilities.

Token for top-up is a free resource
Type: High
Files affected: maci/contracts/TopupCredit.sol

Description: Users can top up their voice credits with TopupCredit tokens. However,
the airdrop functionality of TopupCredit allows anyone to receive an arbitrary amount
of tokens by calling the function multiple times. As a result, users can receive unlimited
voice credits for free.

Impact: The voting system would have no control over the distribution of voice credits.
Suggestion: Set access control over the functions airdrop and airdropTo, e.g. add
the modifier onlyOwner to both functions.

Status: This has been rectified at commit
ee0c8a6a654d136f95180e6728c9cec283c1659b.

Integer overflow problem & improper bit length restrictions
Type: High
Files affected: maci/circuits/circom/float.circom

Description: In circom, the largest number consists of 253 bits. The integer in line 16
can be as large as 2^(2n), but n is only required to be less than 253 in line 11. Hence,
the circuit IntegerDivision might use an overflowing divisor, so that the output can
be incorrect. Also, the use of assert keywords in circom does not contribute to
verification constraints. Thus, the size assertions on a, b in lines 12, 13 does not
actually prevent a malicious coordinator from using out-of-size values. A better
approach is to actually write down circuits that verifies the bit length of the variables.
We suggest that various bit-length checks in float.circom be made more carefully.
The bit length bounds shall be clearly documented, and one shall check if the bounds
are indeed satisfied in the application codes. For example, we found that the assertion
(b < 2**n) in line 13 can be violated during subsidy calculation, since n is set as 64
and b is calculated from the votes which can be 127 bits. An honest coordinator will fail
to update the subsidy commitment in this case. Moreover, the division by zero check is
absent in IntegerDivision.

Impact: A malicious user can affect the honest coordinator’s effort of calculating the
subsidy in various ways: (1) make the result incorrect (2) intercept the calculation.
Suggestion: Ensure that the circuits actually put down bit length constraints instead of
merely assertions. Ensure that the circuits check whether the divisor is non-zero. Make
clear documentation on acceptable bit lengths. Ensure that the contracts will only use
the circuits with values that satisfy the bit length constraints.
Status: This has been rectified as of commit
c8eb37ad593ee671652f11458909df2a95db3581.

Missing re-initialization
Type: High
Files affected: qfi/contracts/QFI.sol

Description: QFI allows multiple rounds of grant funding through the function
acceptContributionsAndTopUpsBeforeNewRound. During this process, the status of

https://github.com/privacy-scaling-explorations/maci/pull/517/commits/ee0c8a6a654d136f95180e6728c9cec283c1659b
https://github.com/privacy-scaling-explorations/maci/blob/feat/codefreeze/circuits/circom/float.circom#L16
https://github.com/privacy-scaling-explorations/maci/blob/feat/codefreeze/circuits/circom/float.circom#L11
https://github.com/privacy-scaling-explorations/maci/blob/feat/codefreeze/circuits/circom/float.circom#L12
https://github.com/privacy-scaling-explorations/maci/blob/feat/codefreeze/circuits/circom/float.circom#L13
https://github.com/privacy-scaling-explorations/maci/blob/feat/codefreeze/circuits/circom/float.circom#L13
https://github.com/privacy-scaling-explorations/maci/pull/523/commits/c8eb37ad593ee671652f11458909df2a95db3581

contributors was not reinitialized. As a result, previous contributors are mistakenly
regarded as contributors for the current round.

Impact: A malicious user can withdraw tokens from a grant round even if it did not
contribute to the grant round.
Suggestion: Reinitialize contributors within the function
acceptContributionsAndTopUpsBeforeNewRound.
Status: This has been rectified at commit
https://github.com/qu55b512b4342aa060295dd58a543d4a079b8f6da7.

MessageQueue in PollFactory is uninitialized
Type: High
Files affected: maci/contracts/Poll.sol, maci/contracts/MACI.sol
Description: The message queue stores the state of messages to be processed by a
coordinator within MACI. Its underlying implementation relies on a quintary binary tree.
At leaf zero, this tree should be initialized with a default “nothing up my sleeve” value.
The “nothing up my sleeve” value is defined within the MACI contract. However, the
message queue is now stored within the Poll contract and as such should be initialized
within the PollFactory contract.

Impact: A malicious user can initialize the message queue with a value that they know
how to decrypt but that takes a very long time to generate a proof for. This would
effectively be a DoS attack on the coordinator.
Suggestion: Move NOTHING_UP_MY_SLEEVE from Maci.sol to Poll.sol within the
PollFactory contract. Add messageAq.enqueue(NOTHING_UP_MY_SLEEVE) to deploy.
Status: This has been rectified at commit
04f21b358b9efc17cffb8732c96f338ec56462d3.

Doesn’t take into account ERC20s that are deflationary or charge a
fee upon transfer

Type: High
Files affected: qfi/contracts/GrantRound.sol, qfi/contracts/QFI.sol
Description: The GrantRound contract enables an owner to use any token they want
for their grant rounds. As such, an owner can choose to use a token that charges a fee

https://github.com/quadratic-funding/qfi/commit/55b512b4342aa060295dd58a543d4a079b8f6da7
https://github.com/privacy-scaling-explorations/maci/pull/522/commits/04f21b358b9efc17cffb8732c96f338ec56462d3

upon transfer or deflationary. This affects the amount that the grant recipient gets as it
is not currently taken into account during the calculations for grant distributions.

Impact: Users may receive less funding than they were allocated.
Suggestion: Check that the associated balance before and after a transfer is the
expected amount.
Status: This has been rectified at commit
b33b89a63f3e284bce0fe376bafc91c6de195e2c.

Transactions do not revert when there aren’t enough funds
Type: Medium
Files affected: qfi/contracts/GrantRound.sol

Description: One shall use assert in replacement of if in line 307, so that the
transaction will be reverted in case the funds are insufficient, and that the recipient will
not be mistakenly marked as having received the payout.

Impact: When the grant round is canceled, the recipient might lose the chance to
receive its payout if there aren’t enough funds.

Suggestion: Replace if with assert in line 307.
Status: This issue has been rectified at commit
a116e1c88d92c0d048b8ea84a57f5df28877ffb0.

Inconsistent restriction on voice credit upper bound
Type: Low
Files affected: maci/contracts/MACI.sol, maci/contracts/Poll.sol

Description: There is an upper bound on the maximum number of voice credits in
MACI contract line 227. The preceding comment says that this bound is also enforced
in the MessageValidator circuit, but this is not the case. Meanwhile, the topup
function in Poll allows users to increase their voice credits without limitations. This
shows that the upper bound constraint is inconsistent within the codebase.

Impact: The inconsistency can mislead users and developers.
Suggestion: Make the upper bound constraint consistent across the codebase.

https://github.com/quadratic-funding/qfi/commit/b33b89a63f3e284bce0fe376bafc91c6de195e2c
https://github.com/quadratic-funding/qfi/blob/feat/codeFreeze/packages/contracts/contracts/GrantRound.sol#L307
https://github.com/quadratic-funding/qfi/blob/feat/codeFreeze/packages/contracts/contracts/GrantRound.sol#L307
https://github.com/quadratic-funding/qfi/commit/a116e1c88d92c0d048b8ea84a57f5df28877ffb0
https://github.com/privacy-scaling-explorations/maci/blob/feat/codefreeze/contracts/contracts/MACI.sol#L227

Status: This has been rectified at issue
7a8c5c190793032ad10370da9da0d2256abdd999.

Redundant functions and redundant checks
Type: Low
Files affected: qfi/contracts/QFI.sol

Description: First, the function closeVotingAndWaitForDeadline in line 413 seems
redundant since there is no real difference between VOTING_PERIOD_OPEN and
WAITING_FOR_FINALIZATION stages. One can still vote in the latter stage. Second, the
checks in lines 438 and 442 in the function finalizeCurrentRound seems redundant,
as the values on the left hand side of the checks are function parameters, which can
always be set to satisfy the checks.

Impact: These redundant checks can mislead users and developers into thinking that
the stages have indeed changed or that the functions are safe under the checks.
Suggestion: Either remove the redundant codes, or fix the codes if they are not doing
their jobs properly.
Status: This has been rectified as of commit
2c2338d7da23d9e64f04c2c59df12b63fa2af84e. The development team noted that
closeVotingAndWaitForDeadline() works as intended and as such kept the
implementation the same.

Potential for Re-entrancy in QFI
Type: Low
Files affected: qfi/contracts/QFI.sol

Description:
In QFI.sol, the functions finalizeCurrentRound(), deployGrantRound() and
contribute() may be susceptible to re-entrancy attacks that may affect the state of
the QFI contract resulting in miscalculation of allocation of funds. In initialize(), the
checks-effects-interaction pattern is not enforced, as such it may be possible for an
owner to take advantage of the fact that the contract helpers have not been initialized
yet.

Impact: May be able to take advantage of state variables affecting the allocation of
funds through re-entrancy.

https://github.com/privacy-scaling-explorations/maci/pull/522/commits/7a8c5c190793032ad10370da9da0d2256abdd999
https://github.com/quadratic-funding/qfi/blob/feat/codeFreeze/packages/contracts/contracts/QFI.sol#L413
https://github.com/quadratic-funding/qfi/blob/feat/codeFreeze/packages/contracts/contracts/QFI.sol#L438
https://github.com/quadratic-funding/qfi/blob/feat/codeFreeze/packages/contracts/contracts/QFI.sol#L442
https://github.com/quadratic-funding/qfi/commit/2c2338d7da23d9e64f04c2c59df12b63fa2af84e

Suggestion: Apply the checks-effects-interaction pattern to initialize(), contribute(),
finalizeCurrentRound() and deployGrantsRound().
Status: This has been partially rectified at commit
999f79cb99cbf79c9abfd91000a3735c2e74dfc1.

Potential for Re-entrancy in MACI
Type: Low
Files affected: qfi/contracts/MACI.sol

Description:
In initialize(), the checks-effects-interaction pattern is not enforced, as such it may be
possible for an owner to take advantage of the fact that the contract helpers have not
been initialized yet. In signUp(), the numSignUps state variable is incremented after
several external calls are made. In particular, a malicious signUpGatekeeper instance
might implement a register with recursive calls to signUp in MACI and thus the same
user can be added multiple times but the numSignUps variable is not updated. In
deployPoll(), the polls and nextPollId state variables are modified after a call to
the pollFactory.deploy() function.It may be possible to do an re-entrancy attack in
which these values are not updated.

Impact: May be able to fake the number of sign ups for a MACI instance.
Suggestion: Apply the checks-effects-interaction pattern to initialize(), signUp(),
and deployPoll().
Status: Has been rectified at commit 6f1fa85299ebbc8fe10e30691afe8f036b8c68d1
and d62c7c710ba126ced713b8d32190408dbf5fa29f . In particular, deployPoll() still
doesn’t completely enforce the checks-effects-interactions pattern. This has been
noted in issue 504.

Potential for Re-entrancy in Poll
Type: Low
Files affected: maci/contracts/Poll.sol

Description:
In each of mergeMaciStateAq(), publishMessage() and topup() in Poll, state
variables are updated after external calls to functions that can take advantage of the
order of execution of these functions.

https://github.com/quadratic-funding/qfi/commit/999f79cb99cbf79c9abfd91000a3735c2e74dfc1
https://github.com/privacy-scaling-explorations/maci/pull/522/commits/6f1fa85299ebbc8fe10e30691afe8f036b8c68d1
https://github.com/privacy-scaling-explorations/maci/commit/d62c7c710ba126ced713b8d32190408dbf5fa29f
https://github.com/privacy-scaling-explorations/maci/issues/504

Impact: In topup(), a malicious caller may be able to top up their credits for the same
message multiple times before numMessages increments. Since numMessages is used
to keep track of the total number of messages, this will result in the top up credits
being inflated. A similar issue arises in publishMessage(). For mergeMaciStateAq(),
a malicious caller can attempt to get the account tree associated with a specific pollId
multiple times. However, merge() in AccQueue.sol will always return the same tree of
the same depth as long as it contains the same accounts between re-entrant calls.
Suggestion: Apply the checks-effects-interaction pattern to topup(),
publishMessage() and mergeMaciStateAq().
Status: Has been rectified at commit 6f1fa85299ebbc8fe10e30691afe8f036b8c68d1.
Further commit a0b07b99489109f6aa937f6f815dfb83686ce589 has added a test case
in order to ensure that the behavior of merge() is as expected if mergeMaciStateAq()
were to be re-entered.

Return values of transferFrom calls are not checked
Type: Low
Files affected: maci/contracts/Poll.sol and qfi/contracts/GrantRound.sol
Description: In Poll.sol, the topup() function calls transferFrom on a TopUpCredit
token. Since the TopUpCredit token uses the default transferFrom implementation, it
will properly revert in the case of an error and return true if everything was executed
properly. However, in GrantRound.sol, the ERC20 token provided can have any
implementation of transferFrom and as such, may have unintended consequences on
any calls that are made to it.

Impact: Not checking the return value of transferFrom() calls may result in
unexpected behavior.
Suggestion: Check the return values of the transferFrom calls in order to ensure the
proper execution.
Status: This has been rectified at commit
6f1fa85299ebbc8fe10e30691afe8f036b8c68d1. Further, GrantRound.sol already uses
safeTransferFrom() which handles this internally.

Miscellaneous mistakes
Type: Low
Files affected: qfi/contracts/QFI.sol

https://github.com/privacy-scaling-explorations/maci/pull/522/commits/6f1fa85299ebbc8fe10e30691afe8f036b8c68d1
https://github.com/privacy-scaling-explorations/maci/pull/522/commits/a0b07b99489109f6aa937f6f815dfb83686ce589
https://github.com/privacy-scaling-explorations/maci/pull/522/commits/6f1fa85299ebbc8fe10e30691afe8f036b8c68d1

Description: The payout token in line 298 of QFI should use nativeToken instead of
an externally given ERC20 token. The state variable contributorCount should be
updated not only in contribute() but also in withdrawContribution() and
acceptContributionsAndTopUpsBeforeNewRound().

Suggestion: Fix the mistakes accordingly.
Status: This has been rectified at commits
https://github.com/quadr367033a2ee0ec431091a39d00c9b9acf5ad2304b and
https://github.com/quadratic-fund55b512b4342aa060295dd58a543d4a079b8f6da7.

The QFI owner is powerful enough to decide the payout distribution
Type: Informational
Files affected: qfi/contracts/GrantRound.sol

Description: The QFI owner will always be the GrantRound owner. It can cancel the
grant round and transferMatchingFunds to pay the funds out in an arbitrary way.

Suggestion: We consider the owner as given a lot of power, and we suggest making
this situation explicit in the documents.
Status: This has been acknowledged by the development team. They will reconsider a
new design and implementation in order to minimize this risk in a future release.

Subsidy functionality is incomplete
Type: Informational
Files affected: maci/contracts/Poll.sol

Description: Subsidy is only calculated but not distributed in the Poll contract. This
means that the subsidy design is not fully implemented.

Suggestion: Implement the subsidy distribution functionality.
Status: This has been acknowledged and will be completed in a future update.

Incorrect error messages
Type: Informational
Files affected: qfi/contracts/QFI.sol

http://transfermatchingfunds
https://github.com/quadratic-funding/qfi/commit/367033a2ee0ec431091a39d00c9b9acf5ad2304b
https://github.com/quadratic-funding/qfi/commit/55b512b4342aa060295dd58a543d4a079b8f6da7

Description: Some functions can be called only when the contract is in some specific
stages. When this is not the case, there will be error messages. In lines 416 and 461,
the error messages are incorrect about the current stage.

Suggestion: Fix the error messages accordingly.
Status: This has been rectified at commit
https://githa15489336450ee9df27737215068b9e853aa7cda.

Return value of ExtContracts.maci.mergeStateAq is ignored in Poll
contract

Type: Informational
Files affected: maci/contracts/Poll.sol
Description: In mergeMaciStateAq in the Poll contract,
ExtContracts.maci.mergeStateAq is called in order to merge the State queue in the
MACI contract. This function returns the new root of the merged tree. However, this
value is ignored when it should be used to set the mergedStateRoot variable.

Suggestion: Set mergedStateRoot =
extContracts.maci.mergeStateAq(_pollId).
Status: This issue has been rectified at commit
76c991a2c4f580c353f526375daf138fbb66ec92.

Anyone can pass mismatched length encryption keys and message
batches to PublishMessageBatch

Type: Informational
Files affected: qfi/contracts/GrantRound.sol

Description: In PublishMessageBatch in GrantRound implicitly assumes that
_messsages and _encPubKeys have the same number of elements. However, if there
are more elements in _encPubKeys than _messages, then the for loop will not take into
account the other elements in _encPubKeys. A similar situation occurs if there are more
elements in _messages than there are elements in _encPubKeys.
Status: This has been rectified at commit
a15489336450ee9df27737215068b9e853aa7cda.

https://github.com/quadratic-funding/qfi/blob/feat/codeFreeze/packages/contracts/contracts/QFI.sol#L416
https://github.com/quadratic-funding/qfi/blob/feat/codeFreeze/packages/contracts/contracts/QFI.sol#L461
https://github.com/quadratic-funding/qfi/commit/a15489336450ee9df27737215068b9e853aa7cda
https://github.com/privacy-scaling-explorations/maci/pull/522/commits/76c991a2c4f580c353f526375daf138fbb66ec92
https://github.com/quadratic-funding/qfi/commit/a15489336450ee9df27737215068b9e853aa7cda

Naming conflict with transferMatchingFunds in FundsManager and
GrantFactory

Type: Informational
Files affected: qfi/contracts/FundsManager.sol, qfi/contracts/GrantFactory.sol

Description: In FundsManager and GrantFactory, there is a transferMatchingFunds
function. However, the functionality of both differ. As such, this can cause confusion
when reading the contracts.
Status: This has been rectified at commit
a116e1c88d92c0d048b8ea84a57f5df28877ffb0.

isAfterDeadline, topup and publishMessage in Poll rely on the block
timestamp

Type: Informational
Files affected: maci/contracts/Poll.sol
Description: In isAfterDeadline, topup and publishMessage within the Poll contract,
block timestamps are used to enforce conditions regarding the validity of when various
portions of a voting period occur. As block timestamps are controlled by miners, it is
possible to manipulate when the voting period starts/ends.
Status: This issue has been acknowledged by the development team and will be taken
into account within their documentation.

Boolean conditions in require statements can be simplified

Type: Informational
Description: In many contracts across both repositories, require statements tests
whether a boolean value is true or false. This is unnecessary as the boolean constant
variable can be used itself to make up a valid boolean condition.
Status: Has been rectified at commit 6f1fa85299ebbc8fe10e30691afe8f036b8c68d1.

https://github.com/quadratic-funding/qfi/commit/a116e1c88d92c0d048b8ea84a57f5df28877ffb0
https://github.com/privacy-scaling-explorations/maci/pull/522/commits/6f1fa85299ebbc8fe10e30691afe8f036b8c68d1

State variables are incremented within a loop in
AccQueue.mergeSubRoots

Type: Informational
Files affected: maci/AccQueue.sol
Description: Within the implementation of mergeSubRoots, the nextSubRootIndex
counter is incremented within a for loop. As this requires an SLOAD operation for each
for loop, it is quite gas intensive. Instead, a local variable that keeps the state of the
nextSubRootIndex should be used within the for loop and then nextSubRootIndex can
be updated outside of the for loop with this local variable.
Status: Has been partially rectified at commit
6f1fa85299ebbc8fe10e30691afe8f036b8c68d1.

_decimals in TopUpCredit and stateTreeDepth in MACI are not
constant

Type: Informational
Files affected: maci/TopUpCredit.sol, maci/MACI.sol
Description: _decimals in TopUpCredit.sol and stateTreeDepth in MACI.sol are set to
specific values that are not changed throughout the contract. As such, these should be
set to constant in order to minimize gas costs.
Status: This has been rectified at commit
f6caf665127a86504c4d163c34575a92bb2ebe04

ERROR_VK_NOT_SET and ERROR_SB_COMMITMENT_NOT_SET
should be moved to PollProcessorAndTallyer
Type: Informational
Files affected: maci/contracts/Poll.sol
Description: ERROR_VK_NOT_SET is an error message to indicate that the verifier key
registry is not set to be used within the Poll. And,
ERROR_SB_COMMITMENT_NOT_SET is an error message to indicate that the state
leaves and ballots commitment has not been set. However, in this new Poll contract,
the verifier key registry is no longer needed and checking the sbCommitment is no
longer done within the poll contract. As such, both are only needed within the
PollProcessorAndTallyer contract. As such, this error message should be moved to the
PollProcessorAndTallyer contract and the appropriate check done.

https://github.com/privacy-scaling-explorations/maci/pull/522/commits/6f1fa85299ebbc8fe10e30691afe8f036b8c68d1
https://github.com/privacy-scaling-explorations/maci/pull/522/commits/f6caf665127a86504c4d163c34575a92bb2ebe04

Suggestion: As there is no use for the ERROR_SB_COMMITMENT_NOT_SET error
message, it can be safely removed. ERROR_VK_NOT_SET should be moved to the
PollProcessorAndTallyer contract and the appropriate check be made.
Status: This has been addressed at commit
6f1fa85299ebbc8fe10e30691afe8f036b8c68d1

General Recommendations
Set public functions to external if they have no internal calls
Public functions which are solely called from external (other smart contracts or
externally owned accounts) should be marked external instead of public, since it
saves gas costs.

Use consistent Solidity versions across files
In general it is always recommended to use the fixed solidity version and the same
solidity version. When using ^0.8.0 pragma, it might use the nightly version of solidity,
which might have experimental features.

Do multiplications before divisions
When dealing with floating/fixed point numbers, it is recommended that multiplication
operations are done before division in order to preserve as much precision as possible.

Check return values of external calls

This codebase makes heavy use of external contracts and as such makes many
external calls. We highly recommend that the return values of external calls are
checked consistently throughout the codebase in order to fail gracefully and properly
handle exceptions and reverts.

https://github.com/privacy-scaling-explorations/maci/pull/522/commits/6f1fa85299ebbc8fe10e30691afe8f036b8c68d1

